State Sales Tax Forecasting

Presentation to the FTA on Special Topics in Sales Tax Forecasting September 23, 2003

> Frederick Church, Research Director Ohio Department of Taxation

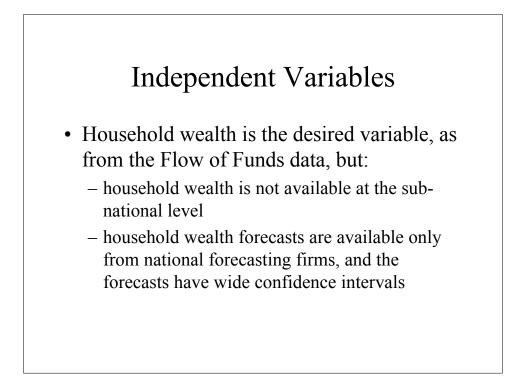
Agenda

Sales Tax Forecasting: Incorporating Wealth Effects on Revenues

Sales Tax Forecasting: Accounting for Behavioral Impacts of Temporary Rate Changes

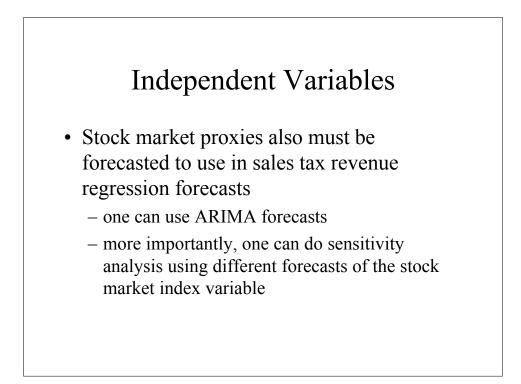
Why We Care About These Topics

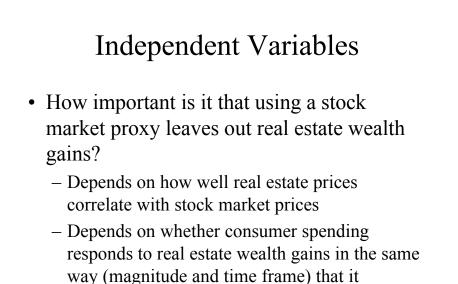
Increases in stock market wealth in the 1990s and losses in the current decade have affected consumer behavior and thus sales tax revenues

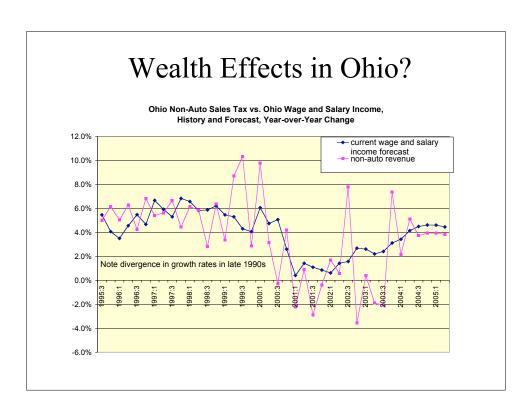

- ➤Gains in real estate wealth are also having an impact, but it is difficult to disentangle from refinancing impacts on cash flow
- Although most states have done their most recent budget balancing with cigarette tax increases, borrowing between funds, etc., there may be more temporary sales tax increases in the future

PART I:

Wealth Effects on Sales Tax Revenues

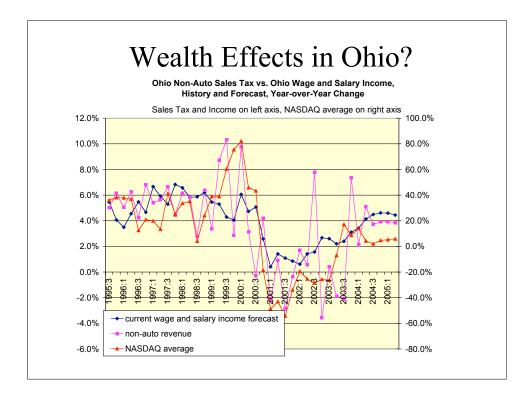

Quality of the Data


- Disaggregated dependent variable data is preferable, but effects can be shown with aggregated data
 - Ohio breaks its sales tax revenues down only into automotive and non-automotive
 - Regression analysis shows wealth effects in the aggregated non-auto sector



Independent Variables

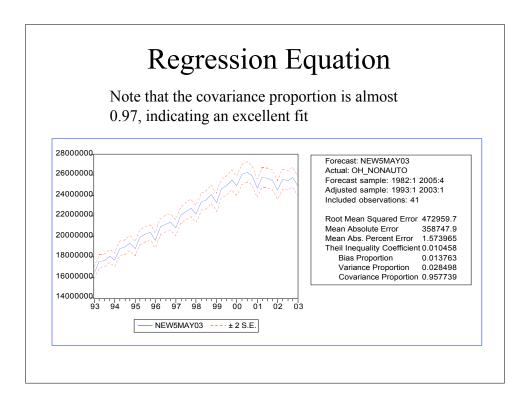
- A shortcut is to use a proxy variable for household wealth like a stock market index
 - empirical evidence suggests that this is not bad for explaining sales tax revenue swings in the late 1990s and early 2000s
 - obviously time will tell how well it works going forward



responds to stock market wealth gains

Wealth Effects in Ohio?

- One can see year over year growth rates in non-auto tax revenue become much more volatile than wage and salary income growth rates about the 3rd quarter of 1998
- Statistically, there is a difference in the sales tax to income relationship even before that, but more subtle


Wealth Effects in Ohio?

• Simple visual analysis suggests that some of the volatility in non-auto sales tax growth rates may be explained by changes in a stock market variable (e.g. the NASDAQ index)

Wealth Effects in Ohio?

- Regression Analysis: several trials performed fitting historical model and then using historical model to do true forecasts of recent past
- The simple log-linear model ultimately selected had very small historical errors (e.g. FY 2000 error was -0.4%, or \$19.9 million on a base of \$5.092 billion)

	Regression Equation								
EVIEWS Forecasting		Ĩ							
Dependent variable:	LOG(OH_NON	AUTO)							
Method: Least Squares Date:	s 5/23/2003	Time:	10:03						
Sample(adjusted):	1993q1	2001q4							
Included observations									
Convergence achieved	l after 5 iterations								
Variable	Coefficient	Std. Error	t-Stat	Prob.					
С	7.007488	0.769468		0					
LOG(OHWAGSAL_WE				-					
LOG(NASDAQ)	0.040053								
@SEAS(1)	-0.043379								
AR(4)	0.319058	0.11539	2.76504	0.0095					
		Mean dependent							
R-squared	0.98539	var	16.8973						
		S.D. dependent							
Adjusted R-squared	0.983505	var	0.1379						
		Akaike info							
S.E.of regression	0.01771	criterion	-5.1011						
Sum squared resid	0.009723	Schwarz criterion	-4.8812						
Log likelihood	96.81971	F-statistic	522.715						
Durbin-Watson stat	2.742199	Prob(F-statistic)	0						

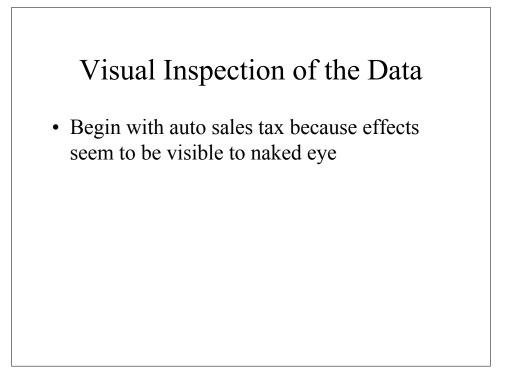
Wealth Effects in Ohio?

- First true test of the equation: FY 2003 revenues were \$5,431.7 million. Subtracting \$250 million to \$275 million for a law change that accelerated payments, revenues were \$5,156.7 million to \$5,181.7 million
- Model forecast was \$5,136.7 million, resulting in an error of 0.4% to 0.9%

Notes

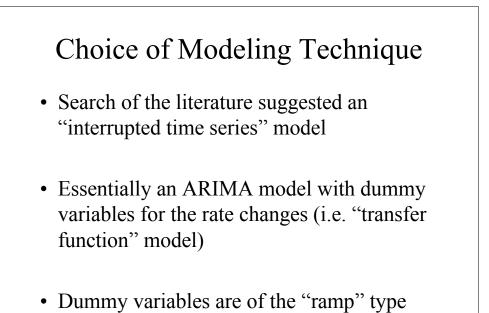
- The model is actually quarterly, but the results have been aggregated to produce fiscal year totals
- Interest rates are not in the equation because all the interest rate variables used were statistically insignificant when wealth measures such as the NASDAQ or the S&P 500 were used

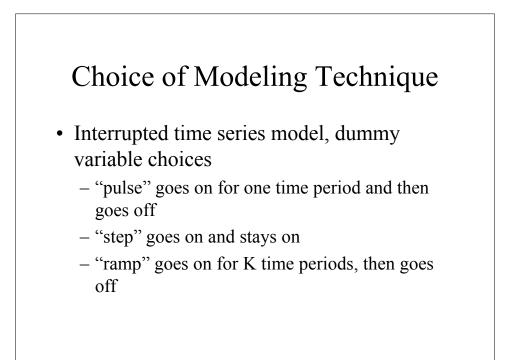
Notes

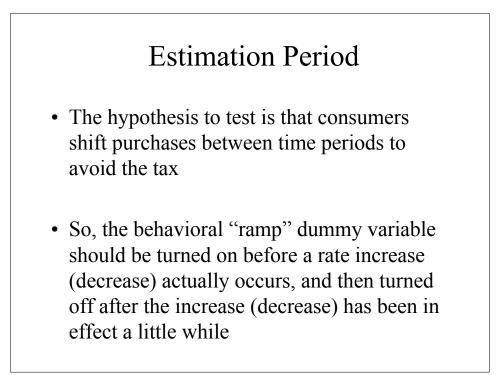

- When interest rate variables were used, the best fit was with a 6 quarter lag
- Obviously forecasting the NASDAQ is a problem, but one can do sensitivity analysis with different forecasts
- For example, an increase in the NASDAQ Index from 1500 to 2000 will increase nonauto sales tax revenues by 1.3%, or about \$18 million per quarter

PART II:

Temporary Sales Tax Rate Changes

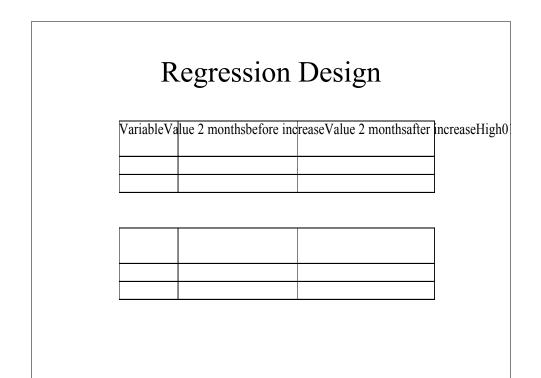

Data Sources and Limitations

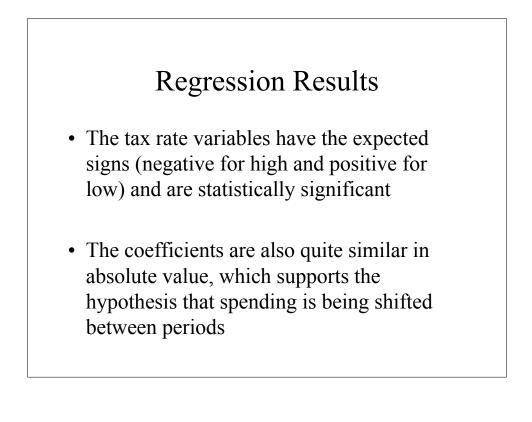

- Ohio does not have enough experience of temporary rate changes for us to use Ohio data as a starting point
- Nebraska does have enough experience, and they shared time series data with us



Goal of Modeling Process

- Capture "pure" shifting of purchases between time periods due to tax rate changes
- We also ran models to test the longer-run impact of a temporary tax rate increase, but that is another topic

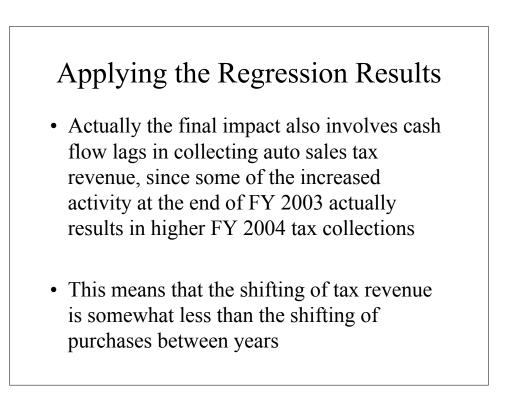




Estimation Period

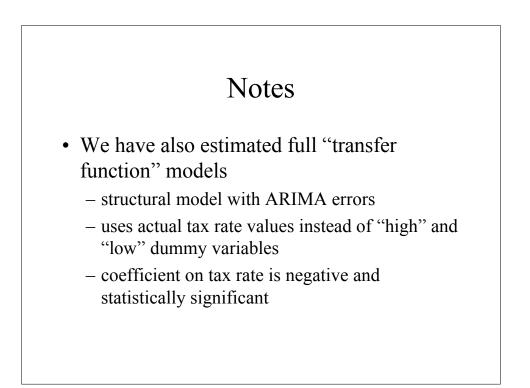
- We ran monthly models on the Nebraska data with different (small) numbers of months before and after rate changes to eliminate time periods that were too long or too short
- We settled on a model that had shifting behavior for two months before and two months after a tax rate change

Re	gress	sion	Resu	lts
Dependent Variable: Method: Least Squar Sample(adjusted): 19 Included observation: Convergence achieve Backcast: 1991:05 19	es 992:05 2003:01 s: 129 after ad ed after 7 itera	justing endpo	ints	
Variable	Coefficient	Std. Error	t-Statistic	Prob.
C @TREND HIGH	95.811 1.001 -19.985	7.433 0.075 7.058	12.890 13.285 -2.832	0.000 0.000 0.005
LOW	22,940	8.418	2.725	0.007
AR(1) AR(4) MA(12)	0.571 -0.225 0.317	0.075 0.080 0.104	7.659 -2.800 3.054	0.000 0.006 0.003
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.86478465 0.85813472 16.419477 32891.1054 -540.44693 2.0733916	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion F-statistic Prob(F-statistic)		188.152491 43.5934513 8.48754934 8.64273296 130.044072 0


Applying the Regression Results

- Calculate the coefficients on the tax rate variables as a percentage of the dependent variable
- Apply the percentages to Ohio estimated auto tax revenues for the months just before and after the tax rate changes

Applying the Regression		ouns
Estimated Revenue Impact on Ohio Over FY 2003 - 2005 B	udget Period	
	value	pct
Mean of dependent variable (MV sales)	188.15	
coefficient on "high" tax rate var	-19.99	-10.62%
coefficient on "low" tax rate var	22.94	12.19%
		estimate
Ohio Revenue Impacts	estimate	doubled
Ohio estimated MV tax revenues, last 2 months of FY 2003	\$166.379	
Estimated gain due to shifting	\$20.29	\$40.57
Ohio estimated MV tax revenues, first 2 months of FY 2004	\$188.813	
Estimated loss due to shifting	(\$20.06)	(\$40.11)
Ohio estimated MV tax revenues, last 2 months of FY 2005	\$167.000	
Estimated loss due to shifting	(\$17.74)	(\$35.48)


Applying the Regression Results

• Estimated Ohio impacts range from shifting \$20 from FY 2004 into FY 2003 to shifting \$40 million from FY 2004 into FY 2003, depending on whether one believes that the impact should be doubled due to the fact that the Ohio tax rate change is 1.0%, rather than the 0.5% modeled

Notes

• If you had disaggregated data on non-auto sales tax revenues that allowed you to isolate "big-ticket" items like furniture and appliances, you could try the same analysis there

Closing

- What we have shown is only a fraction of the models we estimated to arrive at our "final" estimates
- We realize that our estimations are rough
- We welcome any suggested improvements