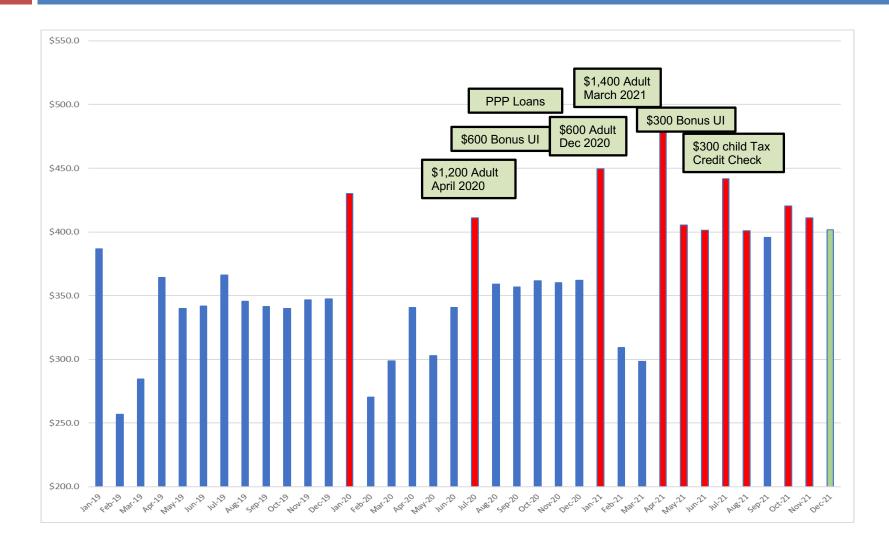

FORECASTING WHEN THE DATA ARE ILL-BEHAVED – EXAMPLE USING THE KENTUCKY SALES TAX

A presentation to the FTA Revenue Estimation Conference Pittsburgh, Pennsylvania October 25, 2022 Greg Harkenrider

Governor's Office for Economic Analysis. Office of State Budget Director

Sales Tax Growth Rates

FY05 FY06 FY07 FY08 FY09 FY10 FY11 FY12 FY13 FY14 FY15 FY16 FY17 FY18 FY19 FY20 FY21 FY22 FY23 FY24


FY2021 General Fund Revenues

(FY21 revenue totals, \$ million)

	FY21 Actual Receipts	FY21 Enacted Estimate	Difference from Enacted v	Percent Change vs. FY20
Sales and Use	\$4,561.0	\$4,232.8	\$328.2	12.0
Individual Income	5,143.8	4,813.0	330.8	7.9
Corp Inc & LLET	882.8	547.5	335.3	38.1
Coal Severance	56.1	52.4	3.7	-4.7
Cigarette Taxes	349.9	345.2	4.7	-1.4
Property	702.5	663.7	38.8	9.2
Lottery	289.1	286.1	3.0	6.5
Other	<u>842.2</u>	<u>763.3</u>	<u>78.9</u>	<u>10.4</u>
TOTAL	\$12,827.4	\$11,704.0	\$1,123.4	10.9%

Monthly Sales Tax Collections

(Millions \$, Influenced by Federal Stimulus efforts from CARES, CAA, and ARP)

FY2022 General Fund Revenues

(FY22 revenue totals, \$ million)

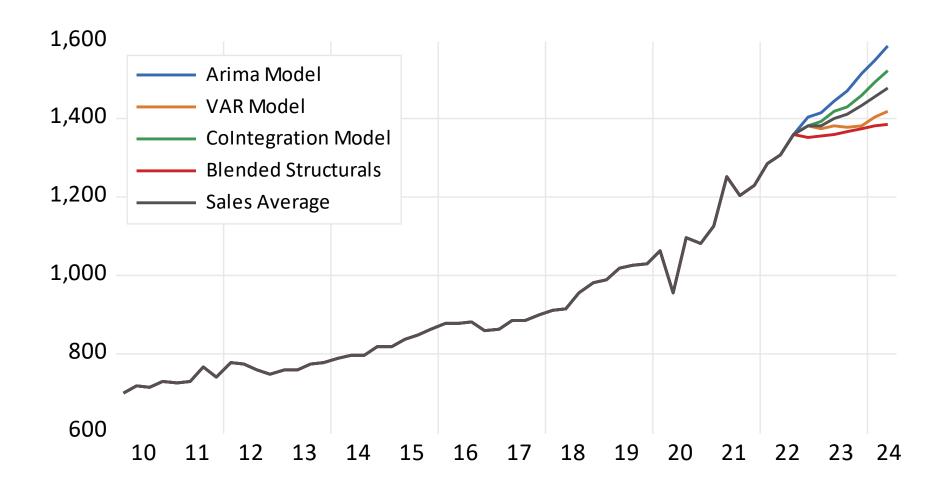
	FY22						
	Full Year			Of			
	Actual %	6 Chg		Estimate	\$ Diff	% Diff	
Individual Income	6,047.5	17.6		5,424.7	622.8	11.5	
Sales & Use	5,062.9	11.0		4,950.7	112.2	2.3	
Corp. Inc. & LLET	1,186.6	34.4		970.5	216.1	22.3	
Property	723.9	3.0		679.2	44.7	6.6	
Lottery	295.0	2.0		319.3	-24.3	-7.6	
Cigarettes	324.5	-7.3		334.7	-10.2	-3.1	
Coal Severance	70.7	26.0		64.1	6.6	10.2	
Other	991.5	17.7		1,013.9	-22.4	-2.2	
General Fund	14,702.5	14.6		13,757.1	945.4	6.9	

Dilemma We are Facing

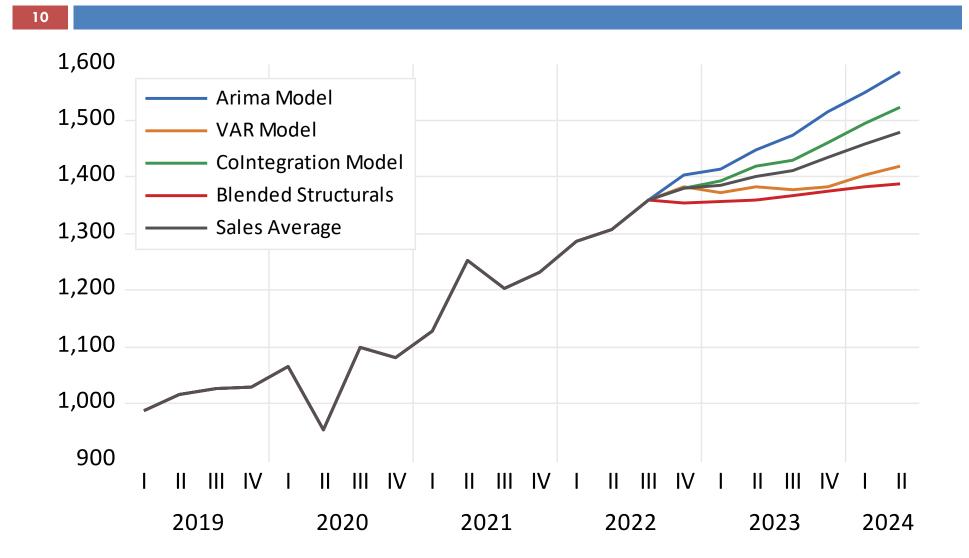
- Underestimated the sales tax for two consecutive years, frankly tired of chasing it up
- Chosen composite forecasting for the sales tax
- Time series models have performed better insample, but ...
- Is there a turning point coming, despite 12.8% growth in the first quarter?
- Structural models tend to do better during turning points vis-à-vis pure time series approaches

FY2023 General Fund Revenues

(FY23 revenue totals, \$ million)


Table 1					
General Fund Interim Forecast					
\$ millions					

	FY23					FY23		
	Q1		Q2, Q3, 8	Q2, Q3, & Q4 Full Year		Official	CFG	
	Actual %	<mark>∕₀ Chg</mark>	Estimate %	ն Chg	Estimate %	∕₀ Chg	Estimate	\$ Diff
Individual Income	1,368.9	8.4	4,399.8	-8.1	5,768.7	-4.6	5,342.3	426.4
Sales & Use	1,397.1	12.8	4,210.6	10.1	5,607.7	10.8	5,283.2	324.5
Corp. Inc. & LLET	337.2	16.0	1,056.6	17.9	1,393.8	17.5	909.8	484.1
Property	68.0	7.8	690.7	4.5	758.7	4.8	674.9	83.8
Lottery	75.0	7.9	262.0	16.2	337.0	14.2	335.0	2.0
Cigarettes	81.1	-3.4	231.4	-3.8	312.5	-3.7	318.6	-6.1
Coal Severance	22.1	72.2	72.8	25.9	94.9	34.3	76.6	18.3
Other	207.1	-48.7	636.1	8.3	843.2	-15.0	818.7	24.5
General Fund	3,556.6	3.8	11,559.9	2.5	15,116.5	2.8	13,759.0	1,357.5


Lessons Learned from the Last 2 Years

- Time Series versus Structural Models
 - Don't disregard the various time series approaches (VEC, ARIMA, VAR, Cointegration)
 - Consider composite forecasting
- Difficulty in fitting dummy variables (inflation, fiscal stimulus, etc.) and populating dummies going forward
- Differenced data versus nominal or log specifications
- Consider the length of your estimation sample
- Turning points and time series models

Sales Tax Model Current Unofficial

Sales Tax Model Fall 2022

Model Specifications, Sales Tax

(Used in the latest Unofficial Estimates)

- □ Time Series for Estimation: 2010q1 to 2022q3
 - Have data back to 1990q1
 - Many law changes dating back that far
- All models use seasonally-adjusted data
- □ Arima {AR (1,3); 1st difference; MA (1,4,5)}
- Cointegration (Sales and Withholding)
- VAR (Sales and Wages & Salaries)
- Structural Models (SRTAFS_0 Nominal Retail Sales); (CDFHE_0 Consumer Spending Furniture and Durable Home); (DOMPURCH_0) Final Sales to Domestic Purchasers;

Advocacy for Time Series Models

(Suggest Blending for longer-term forecasting)

- Time series models have a place at the table during times where growth is faster than the underlying economy would predict
- Even ARIMA models can be used if the forecasting horizon is short; Avoid a-theoretical models for longer time horizons
- VAR models have a built-in check
- Still feel the need to blend in structural models

Aside: How to Blend?

Subjective Methods

- Averaging or weighted averaging (but how do you determine the weights?)
- Let the "decider" help determine the weights
 - Decider could be either the chief revenue estimator; or
 - The consensus forecasting group who oversees the process
- Objectively
 - Restricted Least Square where the restriction is that the coefficients must add to 1(Use the forecasts you wish to blend as the regressors to predict the withheld historical observations in-sample)
 - Weight by the MSE or AIC, SIC methods

Restricted Least Squares Method

- Withhold 8 to 12 quarters of data from the estimation sample.
- Get the forecasted values for each equation
- □ Then forecast the 8 to 12 quarters you withheld
 - Dependent Variable is Sales Tax
 - Independent Variables are your forecasted values you wish too blend
- You must restrict coefficients to equal 1
- □ Sales = $c + B_1(F1) + B_2(F2) + 1 B_1 B_2(F3)$

Lesson 2 – Dummy Variables

- Considered dummy variables for inflation and for federal fiscal policy
- Problems:
 - Don't fit statistically if your model dates back very far
 - No variation in the dummy until COVID period)
 - Coefficients insignificant
 - How do you populate the dummy variable going forward?
 - Example: Fiscal Stimulus. How do we know which present and future quarters will be 1 or Zero?
 - Quickly get Dummy Paralysis if you try to account for all exogenous possibilities that require dummy variables

Lesson 3 – Differenced Data

Null Hypothesis: SALES_SA has a unit root Exogenous: Constant Lag Length: 1 (Automatic - based on SIC, maxlag=3)

		t-Statistic	Prob.*
Augmented Dickey-Fu Test critical values:	ller test statistic 1% level 5% level 10% level	0.560400 -3.959148 -3.081002 -2.681330	0.9828

*MacKinnon (1996) one-sided p-values.

Warning: Probabilities and critical values calculated for 20 observations and may not be accurate for a sample size of 15

Augmented Dickey-Fuller Test Equation					
Dependent Variable: D(SALES_SA)					
Method: Least Squares					
Date: 10/21/22 Time: 11:49					
Sample (adjusted): 2019Q1 2022Q3					
Included observations: 15 after adjustments					

Variable	Coefficient	Std. Error	t-Statistic	Prob.
SALES_SA(-1) D(SALES_SA(-1)) C	0.075009 -0.611567 -43.52620	0.133850 0.257786 147.0470	0.560400 -2.372387 -0.296002	0.5855 0.0352 0.7723
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.323966 0.211293 54.90291 36171.95 -79.69400 2.875288 0.095458	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter. Durbin-Watson stat		25.29898 61.82121 11.02587 11.16748 11.02436 2.436106

Dependent Variable in Levels

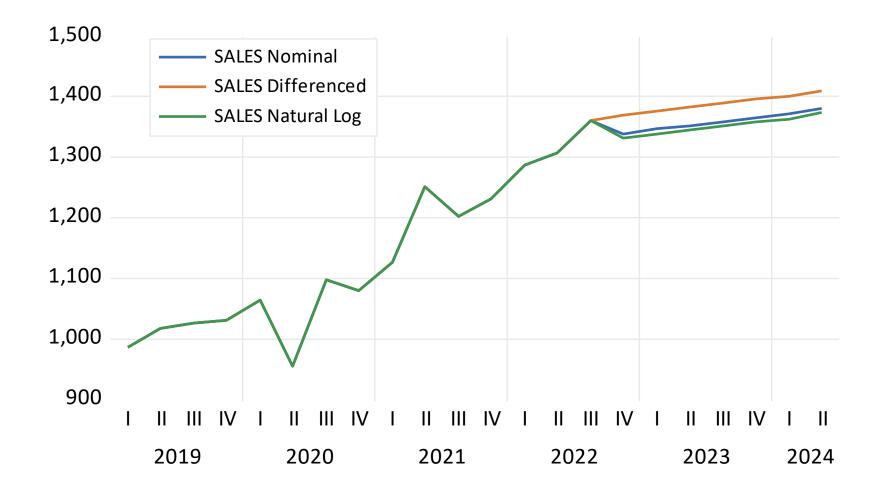
Dependent Variable: SALES_SA Method: Least Squares Date: 10/21/22 Time: 11:24 Sample: 2010Q1 2022Q3 Included observations: 51

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C SRTAFS_0	-48.60816 0.168530	24.39196 0.004232	-1.992795 39.82638	0.0519 0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.970033 0.969422 30.45310 45442.17 -245.5713 1586.140 0.000000	Mean depend S.D. depende Akaike info cr Schwarz crite Hannan-Quin Durbin-Watso	ent var iterion rion n criter.	907.8747 174.1502 9.708679 9.784437 9.737628 0.512677

Dependent Variable in Logs

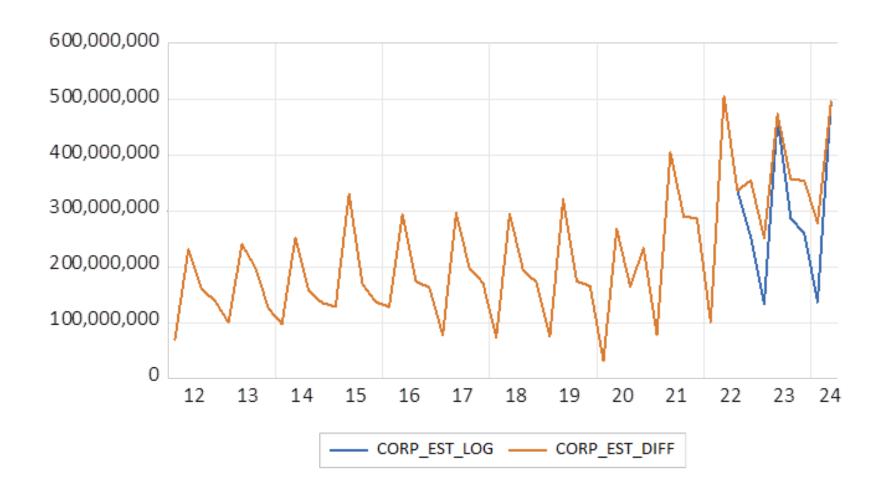
Dependent Variable: LOG(SALES_SA) Method: Least Squares Date: 10/21/22 Time: 11:26 Sample: 2010Q1 2022Q3 Included observations: 51

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C LOG(SRTAFS_0)	-2.117167 1.032749	0.245936 0.028495	-8.608624 36.24306	0.0000 0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.964038 0.963304 0.034467 0.058210 100.4099 1313.559 0.000000	Mean depend S.D. depende Akaike info cri Schwarz crite Hannan-Quin Durbin-Watsc	ent var iterion rion n criter.	6.794574 0.179926 -3.859210 -3.783452 -3.830261 0.422920


Differenced Dependent Variable

Dependent Variable: D(SALES_SA) Method: Least Squares Date: 10/21/22 Time: 11:30 Sample: 2010Q1 2022Q3 Included observations: 51

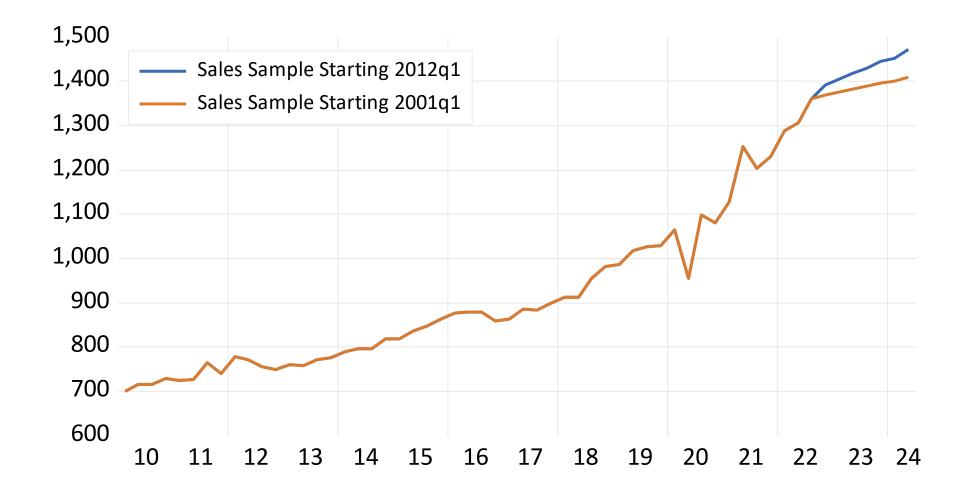
Variable	Coefficient	Std. Error	t-Statistic	Prob.
C D(SRTAFS_0)	-0.374759 0.170679	3.380882 0.018326	-0.110847 9.313535	0.9122 0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.639021 0.631654 21.80103 23288.96 -228.5255 86.74193 0.000000	Mean depend S.D. depende Akaike info cri Schwarz criter Hannan-Quin Durbin-Wats c	ent var iterion rion n criter.	13.15730 35.92105 9.040218 9.115975 9.069167 2.470990


Differencing Data or Not?

(Forecasting Sales Tax, Structural Model, Using Nominal Variable, Natural Logs, and Differences)

Natural Logs versus Differences

(Corporation Income Taxes)

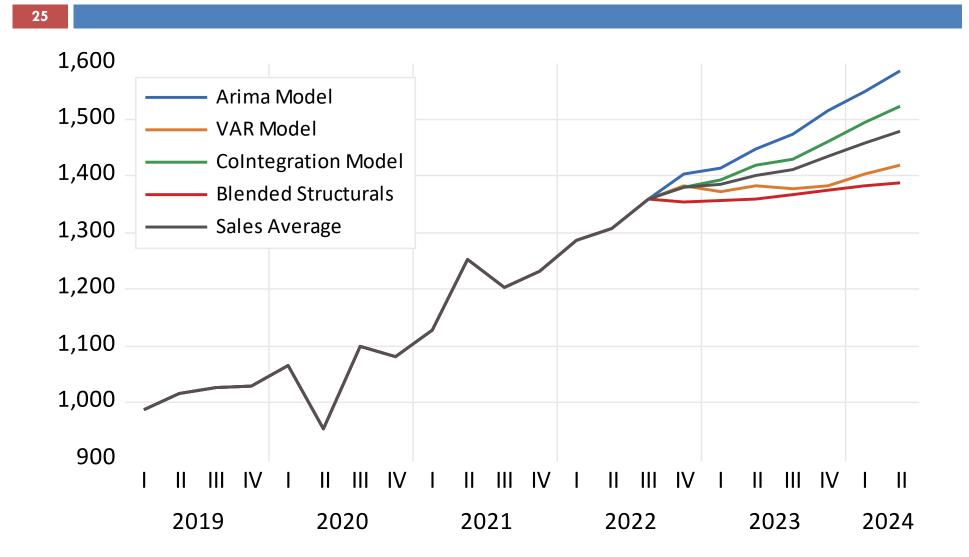


Lessons Learned 4 – Length of Sample

- The rule of thumb that you should always use the entire sample size when running a regression is not always true in time series modeling
 - Factors to consider:
 - Tax Reform Need to have a policy-neutral dependent variable
 - Major court cases or board of tax appeals rulings can affect a time series
 - Changes in the administration of a tax can corrupt a time series

Forecasting Differences due to Sample Size

(Structural Model with US Retail Sales)



23

Lesson 5: Times Series and Turning Points

- 24
- While time series models may have predicted the past better than some other models, they do not capture turning points
- Structural models will better reflect the macro turning points projected by IHS Markit
- Still feel the need to blend given past forecasting errors

Sales Tax Model Fall 2022

Disaggregation of Past Errors

- Errors in IHS Markit forecasts that provide predicted values in structural models
 - Mitigated by composite forecasting
 - Made up over one-half of the error in structural models
- Errors in time series models
 - Smaller differences in sample
 - Could change around turning points
- True error was that we didn't trust the time series models enough to use objective weights

Conclusions

- Forecasting is difficult when the data are ill-behaved
- Consider composite forecasting or blended forecasts
- Don't completely rule out time series models if your goal is accuracy in the short run
- Differenced data is preferable for nonstationary dependent variables
- Don't let your preconceived beliefs dictate your weights or selection of models
- Time series models may overshoot in periods of turning points